domingo, 22 de mayo de 2016

Marte (planeta)

Marte (planeta)

Marte Símbolos astronómico de Marte (planeta)
Schiaparelli Hemisphere Enhanced.jpg
Mosaico o representación de la región de Schiaparelli observada con un filtro de color rojo.
Descubrimiento
FechaConocido desde la antigüedad
CategoríaPlaneta
Magnitud aparente-2,8
Elementos orbitales
Longitud del nodo ascendente49,562°
Inclinación1,850°
Argumento del periastro286,537°
Semieje mayor227 939 100 km (1,523679 ua)
Excentricidad0,093315
Anomalía media19,3564°
Elementos orbitales derivados
ÉpocaJ2000
Periastro o perihelio206 669 000 km (1,381497 ua)
Apoastro o afelio249 209 300 km (1,665861 ua)
Período orbitalsideral686,971 días
Período orbitalsinódico779,96 días
Velocidad orbitalmedia24,077 km/s
Radio orbital medio227 936 640 km(1,523662 ua)
Satélites2
Características físicas
Masa 6,4185 × 1023 kg
Volumen 1,6318 × 1011 km³
Densidad3,9335 ± 0,0004 g/cm³
Área de superficie144 798 500 km²
Diámetro6794,4 km
Diámetro angular3,5–25,1"
Gravedad3,711 m/s²
Velocidad de escape5,027 km/s
Periodo de rotación24,6229 horas
Inclinación axial25,19°
Albedo0,15
Características atmosféricas
Presión0,636 (0,4–0,87) kPa
Temperatura
Mínima186 K, -87 °C
Media227 K, -46 °C
Máxima293 K, 20 °C1
Composición
CO295,32 %
Nitrógeno2,7 %
Argón1,6 %
Oxígeno0,13 %
CO0,08 %
Vapor deagua0,021 %
Óxido nitroso0,01 %
Neón2,5 ppm
Agua pesada0,85 ppm
Criptón0,3 ppm
Formaldehído0,13 ppm
Xenón0,08 ppm
Ozono0,03 ppm
Peróxido de hidrógeno0,018 ppm
Metano0,01 ppm
Cuerpo celeste
AnteriorTierra
SiguienteJúpiter
Mars Earth Comparison.png
Tamaño comparado de la Tierra y Marte.
[editar datos en Wikidata]
Marte es el cuarto planeta del sistema solar en orden de distancia al Sol. Llamado así por el dios de la guerra de la mitología romana Marte, recibe a veces el apodo de planeta rojo debido a la apariencia rojiza que le confiere el óxido de hierro que domina su superficie. Tiene una atmósfera delgada formada por dióxido de carbono, y dos satélites: Fobos y Deimos. Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como la Tierra) y es el planeta interior más alejado del Sol. Es, en muchos aspectos, el más parecido a la Tierra.
Aunque en apariencia podría parecer un planeta muerto, no lo es. Sus campos de dunas siguen siendo mecidos por el viento marciano, sus casquetes polares cambian con las estaciones e incluso parece que hay algunos pequeños flujos estacionales de agua.2
Tycho Brahe midió con gran precisión el movimiento de Marte en el cielo. Los datos sobre el movimiento retrógrado aparente (los llamados "lazos")nota 1 permitieron a Kepler hallar la naturaleza elíptica de su órbita y determinar las leyes del movimiento planetario conocidas como leyes de Kepler.
Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra. Sus fases (porción iluminada vista desde la Tierra) están poco marcadas, hecho que es fácil de demostrar geométricamente. Considerando el triángulo Sol-Tierra-Marte, el ángulo de fase es el que forman el Sol y la Tierra vistos desde Marte. Alcanza su valor máximo en las cuadraturas cuando el triángulo STM es rectángulo en la Tierra. Para Marte, este ángulo de fase no es nunca mayor de 42°, y su aspecto de disco giboso es análogo al que presenta la Luna 3,5 días antes o después de la Luna llena. Esta fase, visible con un telescopio de aficionado, no logró ser vista por Galileo, quien solo supuso su existencia.

Índice

Características físicas[editar]

Tiene forma ligeramente elipsoidal, con un diámetro ecuatorial de 6794 km y polar de 6750 km. Medidas micrométricas muy precisas han mostrado un achatamiento de 0,01, tres veces mayor que el de la Tierra. A causa de este achatamiento, el eje de rotación está afectado por una lenta precesión debida a la atracción del Sol sobre el abultamiento ecuatorial del planeta. La precesión lunar, que en la Tierra es dos veces mayor que la solar, no tiene su equivalente en Marte.
Con este diámetro, su volumen es de 15 centésimas el terrestre y su masa solamente de 11 centésimas. En consecuencia, ladensidad es inferior a la de la Tierra: 3,94 en relación con el agua. Un cuerpo transportado a Marte pesaría 1/3 de su peso en la Tierra, debido a la poca fuerza gravitatoria.

Traslación y rotación[editar]


Rotación de Marte (en movimiento retrógrado, no real), en la imagen el planeta da la rotación en segundos, pero en la realidad tarda más de 24 horas.

Rotación[editar]

Se conoce con exactitud lo que tarda la rotación de Marte debido a que las manchas que se observan en su superficie, oscuras y bien delimitadas, son excelentes puntos de referencia. Fueron observadas por primera vez en 1659 por Christiaan Huygens que asignó a su rotación la duración de un día. En 1666Giovanni Cassini la fijó en 24 h 40 min, valor muy aproximado al verdadero. Trescientos años de observaciones de Marte han dado por resultado establecer el valor de 24 h 37 min 22,7 s para el día sideral (el periodo de rotación de la Tierra es de 23 h 56 min 4,1 s). Marte rota en sentido antihorario, al igual que la Tierra.4
De la duración del día sideral se deduce que el día solar tiene en Marte una duración de 24 h 39 min 35,3 s.
El día solar medio o tiempo entre dos pasos consecutivos del Sol medio por el meridiano del lugar, dura 24 h 41 min 18,6 s. El día solar en Marte tiene, igual que el de la Tierra, una duración variable. No obstante, en Marte la variación es mayor por su elevada excentricidad.
Para mayor comodidad operativa, los responsables de las misiones estadounidenses de exploración de Marte mediante sondas robóticas han decidido unilateralmente dar al día marciano el nombre de sol, pese a tener otros significados en otros idiomas ("suelo" en francés; o el nombre de nuestra estrella en español).

Traslación[editar]

El año marciano dura 1 año, 321 días y 7 horas terrestres.

Oblicuidad orbital[editar]

Los polos de Marte están señalados por dos casquetes polares de color blanco deslumbrante, que han facilitado mucho la determinación del ángulo que forma el ecuador del planeta con el plano de su órbita, ángulo equivalente para Marte a la oblicuidad de la eclíptica en la Tierra. Las medidas hechas por Camichel sobre clichés obtenidos en el observatorio francés del Pic du Midi, han dado para este ángulo 24° 48’. Desde la exploración espacial se acepta un valor de 25,19°[cita requerida], un poco mayor que laoblicuidad de la eclíptica (23° 27’), motivo por el cual, Marte tiene períodos estacionales similares a los de la Tierra, aunque sus estaciones son más largas, dado que un año marciano es casi dos veces más largo que un año terrestre.

Geología[editar]

La ciencia que estudia la superficie de Marte se llama areografía (no confundir con aerografía), nombre que proviene de Ares (dios de la guerra entre los griegos).
Marte es un planeta notablemente más pequeño que la Tierra. Sus principales características, en proporción con las del globo terrestre, son las siguientes: diámetro 53%, superficie 28%, masa 11%. Como los océanos cubren alrededor del 70% de la superficie terrestre y Marte carece de mares, ambos planetas poseen aproximadamente la misma cantidad de superficie pisable.
Gracias a las imágenes tomadas por la cámara HiRISE, que viaja a bordo de la Mars Reconaissance Orbiter, en órbita del planeta rojo desde marzo de 2006, se han puesto de manifiesto muchas de las principales características morfológicas de su superficie.5 La superficie de Marte presenta características morfológicas tanto de la Tierra como de laLuna: cráteres de impacto, campos de lava, volcanes, cauces secos de ríos y dunas de arena. Su composición es fundamentalmente basalto volcánico con un alto contenido en óxidos de hierro que proporcionan el característico color rojo de la superficie. Por su naturaleza, se asemeja a la limonita, óxido de hierro muy hidratado. Así como en las cortezas de la Tierra y de la Luna predominan los silicatos y los aluminatos, en el suelo de Marte son preponderantes los ferrosilicatos. Sus tres constituyentes principales son, por orden de abundancia, el oxígeno, el silicio y el hierro. Contiene: 20,8% de sílice, 13,5% de hierro, 5% de aluminio, 3,8% de calcio, y también titanio y otros componentes menores.

Marte observado por eltelescopio espacial Hubble.
  • Desde la Tierra, mediante telescopios, se observan unas manchas oscuras y brillantes que no se corresponden a accidentes topográficos sino que aparecen si el terreno está cubierto de polvo oscuro (manchas de albedo). Estas pueden cambiar lentamente cuando el viento arrastra el polvo. La mancha oscura más característica es Syrtis Major, una pendiente menor del 1% y sin nada resaltable.
  • La superficie de Marte presenta también unas regiones brillantes de color naranja rojizo, que reciben el nombre de desiertos, y que se extienden por las tres cuartas partes de la superficie del planeta, dándole esa coloración rojiza característica. Estos desiertos en realidad se asemejan más a un inmenso pedregal, ya que el suelo se halla cubierto de piedras, cantos y bloques.
  • Un enorme escalón, cercano al ecuador, divide a Marte en dos regiones claramente diferenciadas: un norte llano, joven y profundo y un sur alto, viejo y escarpado, con cráteres similares a las regiones altas de la Luna. En contraste, el hemisferio norte tiene llanuras mucho más jóvenes, y con una historia más compleja. Parece haber una brusca elevación de varios kilómetros en el límite. Las razones de esta dicotomía global son desconocidas.
  • Hay cráteres de impacto distribuidos por todo Marte, pero en el hemisferio sur hay una vieja altiplanicie de lava basáltica semejante a losmares de la Luna, sembrada de cráteres de tipo lunar. Sin embargo el aspecto general del paisaje marciano difiere al que presenta nuestro satélite como consecuencia de la existencia de atmósfera. En concreto, el viento cargado de partículas sólidas produce una ablación que, en el curso de los tiempos geológicos, ha arrasado muchos cráteres. Estos son, por consiguiente, mucho menos numerosos que en la Luna y la mayor parte de ellos tienen las murallas más o menos desgastadas por la erosión. Por otra parte, los enormes volúmenes de polvo arrastrados por el viento cubren los cráteres menores, las anfractuosidades del terreno y otros accidentes poco importantes del relieve. Entre los cráteres de impacto destacados del hemisferio sur está la cuenca de impacto Hellas Planitia, con 6 km de profundidad y 2000 km de diámetro. Muchos de los cráteres de impacto más recientes tienen una morfología que sugiere que la superficie estaba húmeda o llena de barro cuando ocurrió el impacto.
  • El campo magnético marciano es muy débil, con un valor de unas 2 milésimas del terrestre y polaridad invertida respecto a la de la Tierra.

Geografía[editar]


Mapa topográfico de Marte. Accidentes notables: Volcanes de Tharsis al oeste (incluyendo el Monte Olimpo), Valles Marineris al este de Tharsis, y Hellas en el hemisferio sur.
La superficie de Marte conserva las huellas de grandes cataclismos que no tienen equivalente en la Tierra:
Una característica del hemisferio norte, es la existencia de un enorme abultamiento que contiene el complejo volcánico de Tharsis. En él se encuentra el Monte Olimpo, el mayor volcán del sistema solar. Tiene una altura calculada entre 21 y 26 kma (más de dos veces y media la altura del Everest sobre un globo mucho más pequeño que el de la Tierra) y su base tiene una anchura de 600 km. Las coladas de lava han creado un zócalo cuyo borde forma un acantilado de 6 km de altura. Hay que añadir la gran estructura colapsada de Alba Patera. Las áreas volcánicas ocupan el 10% de la superficie del planeta. Algunos cráteres muestran señales de reciente actividad y tienen lava petrificada en sus laderas. A pesar de estas evidencias, no fue hasta mayo de 2007 cuando el Spirit, descubrió, con un grado alto de certeza, el primer depósito volcánico signo de una antigua actividad volcánica en la zona denominada Home Plate,6 (una zona con lecho rocoso de unos dos metros de altura y fundamentalmente basáltica, que debió formarse debido a flujos de lava en contacto con el agua líquida), situada en la base interior del cráter Gusev. Una de las mejores pruebas es la que los investigadores llaman "bomb sag" (la marca de la bomba). Cuando se encuentran la lava y el agua, la explosión lanza trozos de roca por el aire. Uno de esos trozos que explotan en el aire vuelve a caer y se encaja en depósitos más blandos.

El Monte Olimpo visto desde la órbita de Marte.
Cercano al ecuador y con una longitud superior a los 3000 km, una anchura de hasta 600 km y una profundidad de hasta 8 km, Valles Marineris es un cañón que deja pequeño al Cañón del Colorado. Se formó por el hundimiento del terreno a causa de la formación del abultamiento de Tharsis.7
Hay una clara evidencia de erosión en varios lugares de Marte tanto por el viento como por el agua. Existen en la superficie largos valles sinuosos que recuerdan lechos de ríos (actualmente secos pues el agua líquida no puede existir en la superficie del planeta en las actuales condiciones atmosféricas). Esos inmensos valles pueden ser el resultado de fracturas a lo largo de las cuales han corrido raudales de lava y, más tarde, de agua.
La superficie del planeta conserva verdaderas redes hidrográficas, hoy secas, con sus valles sinuosos entallados por las aguas de los ríos, sus afluentes, sus brazos, separados por bancos de aluviones que han subsistido hasta nuestros días. Todos estos detalles de la superficie sugieren un pasado con otras condiciones ambientales en las que el agua causó estos lechos mediante inundaciones catastróficas. Algunos sugieren la existencia, en un pasado remoto, de lagos e incluso de un vasto océano en la región boreal del planeta. Todo parece indicar que fue hace unos 4000 millones de años y por un breve período, en la denominada era Noeica.
Al igual que la Luna y Mercurio, Marte no presenta tectónica de placas activa, como la Tierra. No hay evidencias de movimientos horizontales recientes en la superficie tales como las montañas por plegamiento tan comunes en la Tierra. No obstante la Mars Global Surveyor en órbita alrededor de Marte ha detectado en varias regiones del planeta extensos campos magnéticos de baja intensidad. Este hallazgo inesperado de un probable campo magnético global, activo en el pasado y hoy desaparecido, puede tener interesantes implicaciones para la estructura interior del planeta.
Aproximación a la imagen, observada con filtro de color amarillo, tomada por el Mars Exploration Rover Opportunity. Muestra la vista del cráter Victoria desde Cabo Verde. Fue capturada durante un período de tres semanas, desde el 16 de octubre hasta el 6 de noviembre de 2006.
Aproximación a la imagen, observada con filtro de color amarillo, tomada por el Mars Exploration Rover Opportunity. Muestra la vista del cráter Victoria desde Cabo Verde. Fue capturada durante un período de tres semanas, desde el 16 de octubre hasta el 6 de noviembre de 2006.
Recientemente, estudios realizados con ayuda de las sondas Mars Reconnaissance Orbiter y Mars Global Surveyor han mostrado que muy posiblemente el hemisferio norte de Marte es una enorme cuenca de impacto de forma elíptica conocida cómo Cuenca Borealis de 8500 kilómetros de diámetro que cubre un 40% de la superficie del planeta -la mayor del Sistema Solar, superando con mucho a la Cuenca Aitken de la Luna- que pudo haberse formado hace 3900 millones de años por el impacto de un objeto de 2000 kilómetros de diámetro. Posteriormente a la formación de dicha cuenca se formaron volcanes gigantes a lo largo de su borde, que han hecho difícil su identificación.8

Características atmosféricas[editar]

La atmósfera de Marte es muy tenue, con una presión superficial de solo 7 a 9 hPa frente a los 1013 hPa de la atmósfera terrestre. Esto representa una centésima parte de la terrestre. La presión atmosférica varía considerablemente con la altitud, desde casi 9 hPa en las depresiones más profundas, hasta 1 hPa en la cima del Monte Olimpo. Los recientes descubrimientos respecto a la exploración marciana, permiten concluir que los datos sobre la presión atmosférica deben ser revisados. Concretamente, porque con tales datos de presión atmosférica, sería inviable el uso de grandes paracaídas para el aterrizaje de los módulos enviados a Marte (ver Mars Science Laboratory).
En base a datos observados fundamentalmente desde la órbita marciana, se ha deducido que la composición atmosférica del planeta es fundamentalmente: dióxido de carbono(95,3%) con un 2,7% de nitrógeno, 1,6% de argón y trazas de oxígeno molecular (0,15%) monóxido de carbono (0,07%) y vapor de agua (0,03%). La proporción de otros elementos es ínfima y escapa su dosificación a la sensibilidad de los instrumentos hasta ahora empleados. No obstante, debido a la confirmación en 2015 de la presencia de agua estacional en la superficie marciana por la NASA, los datos sobre la proporción de oxígeno y vapor de agua atmosféricos deben ser revisados. Con criterio temporal, también se ha supuesto que el contenido de ozono es 1000 veces menor que en la Tierra, por lo que esta capa, que se encuentra a 40 km de altura, sería incapaz de bloquear la radiación ultravioleta.
La atmósfera es lo bastante densa como para albergar vientos muy fuertes y grandes tormentas de polvo que, en ocasiones, pueden abarcar el planeta entero durante meses. Este viento es el responsable de la existencia de dunas de arena en los desiertos marcianos. La nubes pueden presentarse en tres colores: blancas, amarillas y azules. Las nubes blancas son de vapor de agua condensada o de dióxido de carbono en latitudes polares. Las amarillas, de naturaleza pilosa, son el resultado de las tormentas de polvo y están compuestas por partículas de tamaño en torno a 1 micra. La bóveda celeste marciana es de un suave color rosa salmón debido a la dispersión de la luz por los granos de polvo muy finos procedentes del suelo ferruginoso.
En invierno, en las latitudes medias, el vapor de agua se condensa en la atmósfera y forma nubes ligeras de finísimos cristales de hielo. En las latitudes extremas, la condensación del anhídrido carbónico forma otras nubes que constan de cristales de nieve carbónica.
La débil atmósfera marciana produce un efecto invernadero que aumenta la temperatura superficial unos 5 grados; mucho menos que lo observado en Venus y en la Tierra.
La atmósfera marciana ha sufrido un proceso de evolución considerable por lo que es una atmósfera de segunda generación. La atmósfera primigenia, formada poco después que el planeta, ha dado paso a otra, cuyos elementos provienen de la actividad geológica del planeta. Así, el vulcanismo vierte a la atmósfera determinados gases, entre los cuales predominan el gas carbónico y el vapor de agua. El primero queda en la atmósfera, en tanto que el segundo tiende a congelarse en el suelo frío. El nitrógeno y eloxígeno no son producidos en Marte más que en ínfimas proporciones. Por el contrario, el argón es relativamente abundante en la atmósfera marciana. Esto no es de extrañar: los elementos ligeros de la atmósfera (hidrógenohelio, etc.) son los que más fácilmente se escapan en el espacio interplanetario dado que sus átomos y moléculas alcanzan lavelocidad de escape; los gases más pesados acaban por combinarse con los elementos del suelo; el argón, aunque ligero, es lo bastante pesado como para que su escape hidrodinámico hacia el espacio interplanetario sea difícil y, por otra parte, al ser un gas neutro o inerte, no se combina con los otros elementos por lo que va acumulándose con el tiempo.

Distribución desigual del gas metano en la atmósfera de Marte.9
En los inicios de su historia, Marte pudo haber sido muy parecido a la Tierra. Al igual que en nuestro planeta la mayoría de su dióxido de carbono se utilizó para formar carbonatos en las rocas. Pero al carecer de una tectónica de placas es incapaz de reciclar hacia la atmósfera nada de este dióxido de carbono y así no puede mantener un efecto invernadero significativo.
No hay cinturón de radiación, aunque sí hay una débil ionosfera que tiene su máxima densidad electrónica a 130 km de altura.
La atmósfera de Marte escapa al espacio exterior lentamente -pero en forma continuada- a través de tiempo. La principal causa de este escape es el viento solar. Al no existir un campo magnético significativo, las partículas cargadas eléctricamente del viento solar penetran en la atmósfera. El magnetismo de estas partículas interactúa con los iones de la atmósfera y les dan suficiente aceleración como para que algunas logren la velocidad de escape y abandonen el planeta. También golpean las partículas neutras, dándoles también una aceleración semejante en algunos casos. En 2015 la sonda espacial MAVEN midió la tasa de pérdida de la atmósfera, y el resultado fue que cada segundo escapa al espacio exterior más de 100 gramos de la atmósfera de Marte, siendo entre 10 y 20 veces superior la pérdida durante las erupciones solares.10
Aunque no hay evidencia de actividad volcánica actual, recientemente la nave europea Mars Express y medidas terrestres obtenidas por el telescopio Keck desde la Tierra han encontrado trazas de gas metano en una proporción de 10 partes por 1000 millones. Este gas solo puede tener un origen volcánico o biológico. El metano no puede permanecer mucho tiempo en la atmósfera; se estima en 400 años el tiempo en desaparecer de la atmósfera de Marte, ello implica que hay una fuente activa que lo produce. La pequeña proporción de metano detectada, muy poco por encima del límite de sensibilidad instrumental, impide por el momento dar una explicación clara de su origen, ya sea volcánico y/o biológico.9 La misión del aterrizador Mars Science Laboratory (Curiosity) incluye equipo para comparar las proporciones de los isótopos C-12C-13, y C-14presentes en dióxido de carbono y en metano, para así determinar el origen del metano.

El agua en Marte[editar]

Un estudio publicado en septiembre de 2013, basado en los datos recopilados por el rover Curiosity, afirma que en la superficie de Marte habría entre un 1,5 y un 3% de agua11. No obstante, hoy día este cálculo se queda corto y se contempla como erróneo o susceptible de revisión después del anuncio en 2006 y la confirmación en 2015 por la NASA, de la presencia de agua líquida en la superfície de Marte que aparece estacionalmente en ciertas regiones del planeta [4] y [5].
A lo largo del tiempo se han realizado numerosos descubrimientos de indicios que sugieren la probable existencia de agua en el pasado. Un estudio publicado en 2015 por la NASA concluyó que hace 4300 millones de años y durante 1500 millones de años,12 el planeta tuvo un extenso océano en el hemisferio norte,13 con un volumen mayor que el del Ártico,14 suficiente para cubrir todo el territorio marciano con 130 m de agua.15

Vista de Marte (El planeta Rojo)
En las imágenes tomadas por la sonda orbital Mars Reconnaissance Orbiter, se detectaron vetas superficiales descendentes con variaciones estacionales en las colinas marcianas, lo que se interpretó como el indicio más prometedor de la existencia de corrientes de agua líquida en el planeta.16 El 14 de febrero de 2014, en fotografías tomadas por los orbitadores marcianos, se observaron pruebas de que existen flujos de agua en las llamadas líneas de pendiente recurrentes (RSL, siglas en inglés).17 El 28 de septiembre de 2015, durante una rueda de prensa, la NASA anunció que había hallado pruebas sólidas de que el agua líquida, probablemente mezclada con sales percloradas, fluye intermitentemente por la superficie de Marte.18
En diciembre de 2013, se anunció la posibilidad de que hace unos 3600 millones de años, en la denominada Bahía Yellowknife, en el cráter Gale, cerca del ecuador del planeta, habría existido un lago de agua dulce que pudo albergar algún tipo de vida microbiana.19
La posibilidad de agua en Marte está condicionada por varios aspectos físicos. El punto de ebullición depende de la presión y si esta es excesivamente baja, el agua no puede existir en estado líquido. Eso es lo que ocurre en Marte: si ese planeta tuvo abundantes cursos de agua fue porque contaba también con una atmósfera mucho más densa que proporcionaba también temperaturas más elevadas. Al disiparse la mayor parte de esa atmósfera en el espacio, y disminuir así la presión y bajar la temperatura, el agua desapareció de la superficie de Marte. Ahora bien, subsiste en la atmósfera, en estado de vapor, aunque en escasas proporciones, así como en los casquetes polares, constituidos por grandes masas de hielos perpetuos.
Todo permite suponer que entre los granos del suelo existe agua congelada, fenómeno que, por lo demás, es común en las regiones muy frías de la Tierra. En torno de ciertos cráteres marcianos se observan unas formaciones en forma de lóbulos cuya formación solamente puede ser explicada admitiendo que el suelo de Marte está congelado. También se dispone de fotografías de otro tipo de accidente del relieve perfectamente explicado por la existencia de un gelisuelo. Se trata de un hundimiento del suelo de cuya depresión parte un cauce seco con la huella de sus brazos separados por bancos de aluviones.
Se encuentra también en paredes de cráteres o en valles profundos donde no incide nunca la luz solar, accidentes que parecen barrancos formados por torrentes de agua y los depósitos de tierra y rocas transportados por ellos. Solo aparecen en latitudes altas del hemisferio Sur.
La comparación con la geología terrestre sugiere que se trata de los restos de un suministro superficial de agua similar a un acuífero. De hecho, la sonda Mars Reconnaissance Orbiter ha detectado grandes glaciares enterrados con extensiones de docenas de kilómetros y profundidades del orden de 1 kilómetro, los cuales se extienden desde los acantilados y las laderas de las montañas y que se hallan a latitudes más bajas de lo esperado. Esa misma sonda también ha descubierto que el hemisferio norte de Marte tiene un mayor volumen de agua helada.20
Otra prueba a favor de la existencia de grandes cantidades de agua en el pasado marciano, en la forma de océanos que cubrían una tercera parte del planeta ha sido dada por el espectrómetro de rayos gamma de la sonda Mars Odyssey, el cual ha delimitado lo que parece ser las líneas de costa de dos antiguos océanos.21
También subsiste agua marciana en la atmósfera del planeta, aunque en proporción tan ínfima (0,01%) que, de condensarse totalmente sobre la superficie de Marte, formaría sobre ella una película líquida cuyo espesor sería aproximadamente de la centésima parte de un milímetro. A pesar de su escasez, ese vapor de agua participa de un ciclo anual. En Marte, la presión atmosférica es tan baja que el vapor de agua se solidifica en el suelo, en forma de hielo, a la temperatura de –80 °C. Cuando la temperatura se eleva de nuevo por encima de ese límite el hielo se sublima, convirtiéndose en vapor sin pasar por el estado líquido.
El análisis de algunas imágenes muestra lo que parecen ser gotas de agua líquida que salpicaron las patas de la sonda Phoenix tras su aterrizaje.22

Casquetes polares[editar]


Polo norte de Marte observado con filtro de color rojo (de ahí el color rosado del hielo del casquete polar)

Animación de una zanja excavada el día 15 de junio de 2008 por la sonda Phoenix cerca del Polo Norte de Marte. Unos trozos de material subliman en la esquina inferior izquierda.
La superficie del planeta presenta diversos tipos de formaciones permanentes, entre las cuales las más fáciles de observar son dos grandes manchas blancas situadas en las regiones polares, una especie de casquetes polares del planeta. Cuando llega la estación fría, el depósito de hielo perpetuo empieza por cubrirse con una capa de escarcha debido a la condensación del vapor de agua atmosférico. Luego, al seguir bajando la temperatura desaparece el agua congelada bajo un manto de nieve carbónica que extiende al casquete polar hasta rebasar a veces el paralelo de los 60°. Ello es así porque se congela parte de la atmósfera de CO2. Recíprocamente en el hemisferio opuesto, la primavera hace que la temperatura suba por encima de –120 °C, lo cual provoca la sublimación de la nieve carbónica y el retroceso del casquete polar; luego, cuando el termómetro se eleva a más de – 80 °C, se sublima, a su vez, la escarcha; solo subsisten entonces los hielos permanentes, pero ya el frío vuelve y estos no sufrirán una ablación importante.
La masa de hielo perpetuo tiene un tamaño de unos 100 km de diámetro y unos 10 m de espesor. Así pues los casquetes polares están formados por una capa muy delgada de hielo de CO2 ("hielo seco") y quizá debajo del casquete Sur haya hielo de agua. En cien años de observación el casquete polar Sur ha desaparecido dos veces por completo, mientras el Norte no lo ha hecho nunca.
Los casquetes polares muestran una estructura estratificada con capas alternantes de hielo y distintas cantidades de polvo oscuro.
La masa total de hielo del casquete polar Norte equivale a la mitad del hielo que existe en Groenlandia. Además el hielo del polo Norte de Marte se asienta sobre una gran depresión del terreno estando cubierto por «hielo seco».
El 19 de junio de 2008 la NASA afirmó que la sonda Phoenix debió haber encontrado hielo al realizar una excavación cerca del Polo Norte de Marte. Unos trozos de material sublimaron después de ser descubiertos el 15 de junio por un brazo de robot.23 24
El 31 de julio de 2008 la NASA confirma que una de las muestras de suelo marciano introducidas en uno de los hornos del TEGA (Thermal and Evolved-Gas Analyzer), un instrumento que forma parte de la sonda, contenía hielo de agua.25

Géiseres en el polo sur[editar]


"Manchas oscuras" en las dunas del polo sur de Marte.

Concepto de la NASA:"Geysers on Mars". Las manchas son producto de erupciones frías de hielo subterráneo que ha sublimado.
Durante 1998-1999, el sistema orbital Mars Global Surveyor de la NASA detectó manchas oscuras en las dunas de la capa de hielo del polo sur, entre las latitudes 60°- 80°. La peculiaridad de estas manchas, es que el 70% de ellas recurre anualmente en el mismo lugar del año anterior. Las manchas de las dunas aparecen al principio de cada primavera y desaparecen al principio de cada invierno, por lo que un equipo de científicos de Budapest, ha propuesto que estas manchas podrían ser de origen biológico y de carácter extremófilo.26 27
Por su parte, la NASA ha concluido que las manchas son producto de erupciones frías de géiseres, los cuales son alimentados no por energía geotérmica sino por energía solar. Científicos de la NASA explican que la luz del sol calienta el interior del hielo polar y lo sublima a una profundidad máxima de 1 metro, creando una red de túneles horizontales con gas de dióxido de carbono (CO2) bajo presión. Eventualmente, el gas escapa por una fisura y acarrea consigo partículas de arena basáltica a la superficie.28 29 30 31 32

Climatología[editar]

No se dispone todavía de datos suficientes sobre la evolución térmica marciana. Por hallarse Marte mucho más lejos del Sol que la Tierra, sus climas son más fríos, y tanto más por cuanto la atmósfera, al ser tan tenue, retiene poco calor: de ahí que la diferencia entre las temperaturas diurnas y nocturnas sea más pronunciada que en nuestro planeta. A ello contribuye también la baja conductividad térmica del suelo marciano.
La temperatura en la superficie depende de la latitud y presenta variaciones estacionales. La temperatura media superficial es de unos 218 K (-55 °C). La variación diurna de las temperaturas es muy elevada como corresponde a una atmósfera tan tenue. Las máximas diurnas, en el ecuador y en verano, pueden alcanzar los 20 °C o más, mientras las mínimas nocturnas pueden alcanzar fácilmente -80 °C. En los casquetes polares, en invierno las temperaturas pueden bajar hasta -130 °C.
Enormes tormentas de polvo, que persisten durante semanas e incluso meses, oscureciendo todo el planeta pueden surgir de repente. Están causadas por vientos de más de 150 km/h. Dichas tormentas pueden alcanzar dimensiones planetarias.
Durante un año marciano parte del CO2 de la atmósfera se condensa en el hemisferio donde es invierno, o se sublima del polo a la atmósfera cuando es verano. En consecuencia la presión atmosférica tiene una variación anual.

Las estaciones en Marte[editar]


Estaciones en Marte.
Al igual que en la Tierra, el ecuador marciano está inclinado respecto al plano de la órbita un ángulo de 25°,19. La primavera comienza en el hemisferio Norte en el equinoccio de primavera cuando el Sol atraviesa el punto Vernal pasando del hemisferio Sur al Norte (Ls=0 y creciendo). En el caso de Marte esto tiene también un sentido climático. Los días y las noches duran igual y comienza la primavera en el hemisferio Norte. Esta dura hasta que LS=90° solsticio de verano en que el día tiene una duración máxima en el hemisferio Norte y mínima en el Sur.
Análogamente,  , 180°, y 270° indican para el hemisferio Norte el solsticio de verano, equinoccio otoñal, y el solsticio invernal, respectivamente mientras que en el hemisferio Sur es al revés. Por ser la duración del año marciano aproximadamente doble que el terrestre también lo es la duración de las estaciones.
La diferencia entre sus duraciones es mayor porque la excentricidad de la órbita marciana es mucho mayor que la terrestre. La comparación con las estaciones terrestres muestra que, así como la duración de estas difiere a lo sumo en 4,5 días (excentricidad de menos de un 2%), en Marte, debido a la gran excentricidad de la órbita, la diferencia llega a ser primeramente de 51 días (excentricidad de casi un 10%).
Actualmente el hemisferio Norte goza de un clima más benigno que el hemisferio Sur. La razón es evidente: el hemisferio Norte tiene otoños e inviernos cortos y además cuando el Sol está en el perihelio lo cual dada la excentricidad de la órbita del planeta, hace que sean más benignos. Además la primavera y el verano son largos, pero estando el Sol en el afelio son más fríos que los del hemisferio Sur. Para el hemisferio Sur la situación es la inversa. Hay pues una compensación parcial entre ambos hemisferios debido a que las estaciones de menos duración tienen lugar estando el planeta en el perihelio y entonces recibe del Sol más luz y calor. Debido a la retrogradación del punto Vernal y al avance del perihelio, la situación se va decantando cada vez más.

Clima marciano en el pasado[editar]

Hay un gran debate respecto a la historia pasada de Marte. Para unos, Marte albergó en un pasado grandes cantidades de agua y tuvo un pasado cálido, con una atmósfera mucho más densa, el agua fluyendo por la superficie y excavando los grandes canales que surcan su superficie.
La orografía de Marte presenta un hemisferio norte que es una gran depresión y donde los partidarios de Marte húmedo sitúan al Oceanus Borealis, un mar cuyo tamaño sería similar al Mar Mediterráneo.
El agua de la atmósfera marciana posee cinco veces más deuterio que en la Tierra.33 34 Esta anomalía, también registrada en Venus, se interpreta como que los dos planetas tenían mucha agua en el pasado pero que acabaron perdiéndola. (El agua de mayor peso tiene mayor tendencia a permanecer en el planeta y no perderse en el espacio).
Los recientes descubrimientos del robot de la NASA Opportunity, avalan la hipótesis de un pasado húmedo.
A finales de 2005 surgió la polémica sobre las interpretaciones dadas a determinadas formaciones de rocas que exigían la presencia de agua, proponiéndose una explicación alternativa que rebajaba la necesidad de agua a cantidades mucho menores y reducía el gran mar o lago ecuatorial a una simple charca donde nunca había existido más de un palmo de agua salada. Algunos científicos han criticado el hecho de que la NASA solo investiga en una dirección buscando evidencias de un Marte húmedo y descartando las demás hipótesis.
Así pues tendríamos en Marte tres eras. Durante los primeros 1000 millones de años un Marte calentado por una atmósfera que contenía gases de efecto invernadero suficientes para que el agua fluyese por la superficie y se formaran arcillas, la era Noeica que sería el anciano reducto de un Marte húmedo y capaz de albergar vida. La segunda era duró de los 3800 a los 3500 millones de años y en ella ocurrió el cambio climático, y la era más reciente y larga que dura casi toda la historia del planeta y que se extiende de los 3500 millones de años a la actualidad con un Marte tal como lo conocemos en la actualidad frío y seco.[cita requerida]
En resumen el paradigma de un Marte húmedo que explicaría los accidentes orográficos de Marte está dejando paso al paradigma de un Marte seco y frío donde el agua ha tenido una importancia mucho más limitada.

Órbita[editar]

La órbita de Marte35 es muy excéntrica (0,09): entre su afelio y su perihelio, la distancia del planeta al Sol difiere en unos 42,4 millones de kilómetros. Gracias a las excelentes observaciones de Tycho BraheKepler se dio cuenta de esta separación y llegó a descubrir la naturaleza elíptica de las órbitas planetarias consideradas hasta entonces como circulares.
Este efecto tiene una gran influencia en el clima marciano, la diferencia de distancias al Sol causa una variación de temperatura de unos 30 °C en el punto subsolar entre el afelio y el perihelio.
Si dentro de esa órbita se dibuja la de la Tierra, cuya elipse es mucho menos alargada, puede observarse también que la distancia de la Tierra a Marte se halla sujeta a grandes variaciones. En el momento de la conjunción, es decir, cuando el Sol está situado entre ambos planetas, la distancia entre estos puede ser de 399 millones de kilómetros y el diámetro aparente de Marte es de 3,5". Durante las oposiciones más favorables esa distancia queda reducida a menos de 56 millones de kilómetros y el diámetro aparente de Marte es de 25", alcanzando una magnitud de -2,8 (siendo entonces el planeta más brillante con excepción de Venus). Dada la pequeñez del globo marciano, su observación telescópica presenta interés especialmente entre los períodos que preceden y siguen a las oposiciones.
El 27 de agosto de 2003, Marte realizó su acercamiento a la Tierra en 60 000 años: 55 758 006 km. La última vez que había estado tan cerca fue el 12 de septiembre del57 617 a. C., y la próxima vez que sucederá será en el 2287.[cita requerida] En general, en sus órbitas alrededor del Sol, Marte y la Tierra se encuentran a su distancia mínima una vez cada 26 meses.36 La última oposición de Marte sucedió el 8 de abril de 2014, en que pasó a una distancia de unos 93 millones de km. La siguiente oposición de Marte sucederá el 22 de mayo de 2016, en que pasará a una distancia de unos 76 millones de km. Una distancia récord se dio el 22 de agosto de 1924, en que Marte pasó a una distancia de 55,7776 millones de km.37 [cita requerida] Otra distancia récord sucederá el 24 de agosto de 2208, en que Marte pasará a una distancia de 55,7686 millones de km.38[cita requerida]

Satélites naturales[editar]


Fobos y Deimos (comparación de tamaño)
Marte posee dos pequeños satélites naturales, llamados Fobos y Deimos. Su órbita está muy próxima al planeta. Se cree que son dos asteroides capturados.
Ambos satélites fueron descubiertos en 1877 por Asaph Hall.
Sus nombres fueron puestos en honor a los personajes de la mitología griega que acompañaban a Ares (Marte para la mitología romana).
Desde la superficie de Marte, Deimos, el más lejano y pequeño sale por el este como la Luna. Sin embargo, Fobos, más grande y cercano, se mueve alrededor del planeta más rápido de lo que el mismo planeta rota. Por este motivo aparece en el occidente, se mueve comparativamente, en forma rápida a través del cielo (en 4 horas 15 minutos o menos) y se pone al este, aproximadamente dos veces por cada día marciano (cada 11 horas y 6 minutos).

Asteroides troyanos[editar]

Marte posee, como Júpiter, algunos asteroides troyanos en los puntos de Lagrange L4 y L5; los tres asteroides reconocidos oficialmente por laUnión Astronómica Internacional y el Minor Planet Center son: 5261 "Eureka"101429 VF31 y el 121514 UJ7. También se han descubierto en Marte los siguientes asteroides troyanos: 1999 UJ7 (en el punto L 4),1998 VF31, 2001 DH47, 2001 FG24, y 2001 FR127 (en el punto L 5). Los asteroides coorbitales 1998 QH56 y 1998 SD4 no se consideran como Troyanos porque no son estables y serán alejados por la gravitación de Marte en los próximos 500 000 años.

Vida[editar]

Las teorías actuales que predicen las condiciones en las que se puede encontrar vida, requieren la disponibilidad de agua en estado líquido. Es por ello tan importante su búsqueda. Un estudio publicado en 2015 por la NASA concluyó que hace 4300 millones de años y durante 1500 millones de años,39 el planeta tuvo un extenso océano en el hemisferio norte,40 con un volumen mayor que el del Ártico,41 suficiente para cubrir todo el territorio marciano con 130 m de agua.42
Trazas de gas metano fueron detectadas en la atmósfera de Marte en 200343 44 45 46 47 lo cual es considerado un misterio, ya que bajo las condiciones atmosféricas de Marte y la radiación solar, el metano es inestable y desaparece después de varios años, lo que indica que debe de existir en Marte una fuente productora de metano que mantiene esa concentración en su atmósfera, y que produce un mínimo de 150 toneladas de metano cada año.48 49 La sonda Mars Science Laboratory (conocida por su apodo "Curiosity") incluye un espectrómetro de masas que busca medir la diferencia entre 14C y 12C para determinar si el metano es de origen biológico o geológico.50
No obstante, en el pasado existió agua líquida en abundancia y una atmósfera más densa y protectora; estas son las condiciones que se creen más favorables que hubo de desarrollarse la vida en Marte. El meteorito ALH84001 que se considera originario de Marte, fue encontrado en la Antártida en diciembre de 1984 por un grupo de investigadores del proyecto ANSMET y algunos investigadores consideran que las formas regulares podrían ser microorganismos fosilizados.51 52 53

Observación[editar]

Christiaan Huygens hizo las primeras observaciones de áreas oscuras en la superficie de Marte en 1659, y también fue uno de los primeros en detectar los casquetes polares. Otros astrónomos que contribuyeron al estudio de Marte fueron G. Cassini (calculó en 1666 la rotación del planeta en 24 horas y 40 minutos y en 1672

No hay comentarios:

Publicar un comentario